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In many applications, the environmental context for and drivers of movement patterns
are just as important as the patterns themselves. This article adapts standard data min-
ing techniques, combined with a foundational ontology of causation, with the objective
of helping domain experts identify candidate causal relationships between movement
patterns and their environmental context. In addition to data about movement and its
dynamic environmental context, our approach requires as input definitions of the states
and events of interest. The technique outputs causal and causal-like relationships of
potential interest, along with associated measures of support and confidence. As a val-
idation of our approach, the analysis is applied to real data about fish movement in the
Murray River in Australia. The results demonstrate that the technique is capable of iden-
tifying statistically significant patterns of movement indicative of causal and causal-like
relationships.
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1. Introduction

Context is central to understanding movement. For example, in the field of movement ecol-
ogy, there is an agreement that animal movement can only be understood through a study
of both the movement and the embedding geographical context (Nathan et al. 2008).

However, to date, relatively few techniques help in the identification of the contextual
drivers of movement (Andrienko et al. 2011, Gudmundsson et al. 2012). Instead, previous
work has focused strongly on techniques for characterizing individual or group movement,
including individual trajectory segmentation, clustering groups of trajectories, and even
defining basic laws governing human mobility on a population level (Gonzalez et al. 2008,
Gudmundsson et al. 2012).

The new technique proposed and evaluated in this article aims to identify candidate
causal relationships between movement data and the environmental context in which this
movement occurs. Our approach is based on an adaptation of established data mining tech-
niques and is applied to a specific example of long-term fish monitoring. The results,
validated through comparison with patterns of random movement, demonstrate how the
technique can be used to identify plausible environmental causes of fish movement.
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2. Background

2.1. Movement analysis

Following the rapid development of tracking technologies, the study of moving individuals
has received much attention, both theoretical and applied (Laube et al. 2011, Gudmundsson
et al. 2012). The ability to track large numbers of individuals at previously unobservable
spatial and temporal granularities requires new methods for the analysis of individual tra-
jectories and collective motion. Methodological work includes techniques for segmenting
individual trajectories (Buchin et al. 2011a, Pelekis et al. 2012) and assessing the similarity
of trajectories for clustering (Buchin et al. 2011b, 2012). The study of moving groups has
resulted in many different yet related definitions and algorithms for the detection of ‘flocks’
(Laube et al. 2005, Gudmundsson et al. 2007), ‘convoys’ (Jeung et al. 2008), ‘herds’
(Huang et al. 2008), and ‘leaders’ (Andersson et al. 2008, Nagy et al. 2010). In view of this
diversity, the ontological foundations of collective motion have also received much-needed
attention (Wood and Galton 2009a, 2009b). Application domains have also embraced the
new data sources. Whereas social physicists aim to discover basic laws governing human
mobility at a population and even individual level (Gonzalez et al. 2008, Schneider et al.
2013), behavioral ecologists welcome the ability to follow their study subjects at every turn
(Nathan et al. 2008).

Most movement analysis work so far focused on (1) objects moving without constraints
in a Euclidean two-dimensional space (e.g., migrating geese, Buchin et al. 2012); (2) object
trajectories monitoring positions over time (most tracked animals in movement ecology,
Nathan et al. 2008); and (3) analyzing the shape of trajectories and by that largely ignoring
the embedding of the movement in its geographic context (e.g., segmenting trajectories
based on speed or sinuosity, Buchin et al. 2011b).

However, most objects moving in geographic space will in one way or another be
constrained. Human movement is highly constrained, as we usually depend on transporta-
tion infrastructure best modeled as a network space (Duckham 2012, Gudmundsson et al.
2012). Even migrating geese will be constrained in their movement by winds and feed-
ing sites along their route. Constrained movement, furthermore, offers an alternative to
conventional GNSS (Global Navigation Satellite System) trajectory tracking, as moving
objects can be monitored when passing checkpoints of cordons with fixed positions (Both
et al. 2012). Application-driven research strongly suggests that a complete understanding
of movement and the processes driving it can only be achieved when studying movement in
combination with the geographic space in which the movement is embedded (Nathan et al.
2008, Andrienko et al. 2011). The approach presented in this article aims at exactly this:
relating constrained movement with the changing geographical and environmental context
for that movement.

2.2. Causation

Although causality has been actively investigated in philosophy for many centuries, with a
literature far too voluminous for even a cursory survey here (but, see Beebee et al. 2009,
for some initial pointers), systematic treatments of causality in GIScience have been few
and far between, although exceptions can be found.

Yuan (2007) introduces the notion of ‘geographic dynamics’, whereby directly observ-
able changes and movements result from (presumably unobservable) ‘drivers,’ which she
characterizes as activities, events, and processes. The problem confronting the researcher is
to infer the latter from the former. Clearly, this cannot be done effectively in the absence of
generalizable regularities in the behavior of the drivers and their relation to the observables.
Such regularities would form, in effect, a suite of causal laws governing the evolution of the
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geographical system under study, although this aspect seems to be rather under-emphasized
in Yuan’s highly programmatic account. More details relating to this approach can be found
in Yuan and Hornsby (2008).

Explicit reference to causality is similarly downplayed in works such as Claramunt
and Thériault (1995, 1996), which provide detailed analyses of the possible forms of spa-
tiotemporal evolution in the geographical domain. Such analysis is a prerequisite for causal
modeling, but so long as this linkage remains implicit there is a danger of conflating distinct
forms of causal and causal-like relationships which play different roles in our understand-
ing of a phenomenon. These different relationships were addressed by Galton and Worboys
(2005) and Galton (2012), on which we base the account in this article.

An early paper by Allen et al. (1995) is particularly interesting for our purposes because
of the importance accorded to conditional causality, by which ‘the cause . . . must be inter-
preted as a ‘trigger’ of a process which cannot occur without certain external or internal
conditions, and not as a necessary and sufficient producer of the effect’ (Allen et al., 1995,
p. 403, with reference to Bunge 1966). In this picture, it is natural to model the ‘trigger’
as an event and the condition which makes it causally efficacious as a state. In view of
this, therefore, Allen et al. ‘do not consider one state to have been “caused” by another, but
rather one change of state in an object to have been “caused” by another change of state of
either the same object or a different object’. This fits in well with the approach of Galton
(2012), which we follow in this article, as discussed in the following section (Section 3).

El-Geresy et al. (2002) likewise ascribe the cause and effect relation to events
(‘changes’) and not to states, and some of their remarks concerning the relative timing
of cause and effect are of relevance to us here. Although one might expect an effect to
occur as soon as its cause occurs, they note that the effect may be delayed, either because
the cause must attain some intensity threshold before the effect can occur or because the
cause and effect are spatially separated, and that it takes time for the influence of former
to reach the latter. Rather than taking El-Geresy et al. at face value here, we would sug-
gest that the proper description of cases like this is sensitive to the granularity at which
the phenomena are described. One of their examples concerns a case where the release of
pollutants into a river causes the death of vegetation at a certain point downstream. At this
coarse level of description, we do indeed appear to have a case of delayed causality. But, at
a finer granularity this appearance is dispelled: first, the release of the pollutants causes the
pollutants to start flowing downstream; this leads, after a time, to the pollutants reaching
the vegetation, an event which causes the vegetation to die. The two cases of ‘causes’ here
are, at this level of granularity, effectively instantaneous, while the delay between them
results from the finite speed of the river’s flow (which leads to, but does not cause, the
arrival of the pollutants at the vegetation).

3. Ontological model

We adopt for the ontological foundations of this work the approach of Galton (2012), sum-
marized in Figure 1. By starting from solid ontological foundations, our aim is to ensure
that our approach is flexible enough to be useful in a range of applications beyond our
specific example of fish movement.

In summary, after Galton (2012),

• Only events may strictly cause other events.
• Events may initiate or terminate states.
• States (of the world) only affect causation in as much as they can allow events to

cause other events.
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Event State
cause

initiate
terminate

allow

Figure 1. Causal-like relationships amongst states, events, and processes, after Galton (2012).

Full
moon

High
river
flow

Start of
high flow

initiates
Start of fish
migration

causes

allows

Figure 2. Example ontology of fish migration causation (cf. Figure 1).

Like Galton (2012), we refer to the relationships ‘initiate,’ ‘terminate,’ and ‘allows’
as causal-like relationships to distinguish them from strict event–event causation. After
Galton (2012), events are defined as temporally bounded ‘happenings’ where one or more
participants in that event change. Galton’s ontology of causation additionally accounts for
processes, defined as an ‘an open-ended homogeneous activity’ akin to a ‘state of change.’
However, in this article, we are concerned solely with events and leave an investigation into
the causal role of processes as a matter for future work.

Events, states, and their inter-relationships can all play important roles in understanding
movement and its context. For example, Figure 2 shows diagrammatically a possible causal
explanation of fish movement, our motivating application in this article. In Figure 2, a full-
moon event causes the start of a fish migration event. This cause is allowed by the state of
high river flow, itself initiated by an event, the start of high river flow.

3.1. Co-location and granularity

Armed with this (aspatial) ontology, we make one further (spatiotemporal) assumption that
spatiotemporal co-location is a prerequisite of causal and causal-like relationships. In order
for one spatial event to cause another, these events must share at least one point in space
and time. Similarly, a state can only allow causation of events in its spatiotemporal vicinity.

Counterexamples to the principle of co-location may appear to occur where an event
in one spatiotemporal location is cited as the cause of an event in a remote location
(cf. El-Geresy et al. 2002). However, as explained above (cf. Section 2.2), we interpret
these apparent counterexamples as the result of describing the phenomena in a coarse-
grained way that glosses over an intermediate chain of causal or causal-like connections.
In detail, each causal link in the chain is expected to satisfy the spatiotemporal co-location
requirement.

Specifically, we identify three distinct granularity effects that can lead to our principle
of strict spatiotemporal co-location being obscured in practical observations and data:
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• Causal granularity: Causal relationships, such as those in Figure 2, are at a relatively
coarse level of granularity. As we have argued earlier, there may in practice be a
chain of unobserved, finer-grained causations. For example, at a finer granularity,
river flow and temperature events may cause changes to a variety of physiological
and chemical processes in fish. In turn, these may subsequently cause a migration
event.

• Temporal granularity: Even in cases where causation is instantaneous, the unavoid-
able temporal granularity in data may lead to an apparent lag between causing and
caused event. Sampling granularity may mean that the start of a migration event, for
example, may not in practice be observed until a short time after it began in actuality.

• Spatial granularity: Similar to temporal granularity, spatial granularity may lead to
an apparent lag between causing and caused event. An event such as an increase in
river flow in a section of the river will not strictly and immediately hold over all of
that section.

In summary, we assert that events can only initiate or terminate the states with which
they are co-located. We ascribe apparent counter examples to this assertion to one or more
of the granularity effects discussed above.

3.2. Caveat

As was famously pointed out by Hume (1739), empirical data alone can never furnish
conclusive evidence of causal relationships. Thus, the techniques developed in this arti-
cle cannot be claimed to identify causal or causal-like connections as such. Instead, their
purpose is to reveal prima facie candidates for such connections: sequences of co-located
events, or states and events, which are plausible to consider as exhibiting causal or causal-
like relationships. It is to be expected that these candidate causal relationships may be
corroborated or refuted by closer analysis that goes beyond the immediate data. In this
way, we expect our technique could assist domain experts in exploring hypotheses about
causal relationships that may explain patterns in dense movement data sets.

4. Analysis method

In this section, we outline our analysis method for deriving candidate causal and causal-
like relationships, discussed in the previous section, from the combination of movement
and environmental data.

Our approach is based on the combination of two well-established data mining tech-
niques: association rule mining and sequence mining. With reference to Figure 2, in
Section 4.1, we show how association rule mining can be used as the basis for inferring
causal-like ‘allows’ relations. Section 4.2 then applies sequence mining to the problem of
inferring true causal relations between events. In Section 4.3, we discuss the definition of
events and states, effectively yielding the causal-like relations ‘initiates’ and ‘terminates.’
Finally, Section 4.4 briefly outlines our implementation, built on top of open-source R
software packages.

The illustrative examples used to explain (and in Section 5 validate) our technique
make reference to data concerning fish movements in the Murray River, in south-eastern
Australia. As part of a separate study of the effect of conservation activities upon fish
populations (Lyon 2012), a major environmental monitoring project has tagged upwards
of 1000 fish in the Murray River with radio transmitters. River side radio receivers at
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368 S. Bleisch et al.

18 strategic locations along the course of river partitioned the river and its tributaries into
24 zones. Over a period of 6 years, the movement of tagged fish between different zones
was tracked.

The project is providing important insights into the effects of a restoration intervention
on the river to improve fish habitats (with the ultimate aim of bolstering fish populations).
However, in addition to the statistical analyses of fish populations undertaken in the origi-
nal study (see Lyon 2012), this data set could also help in understanding important causal
relationships connected with the ecology of this environmentally and economically vital
river system. For example, domain experts may be interested to know: do moon phases or
high river flow events cause certain patterns of long-range movement in tagged fish? or
do low water temperatures lead to fish staying within limited home ranges of the river?
The technique developed and explained below aims to assist in the identification of such
causal and causal-like relationships. In our experience, such tools can in turn assist ecolog-
ical domain experts in formulating and testing different hypotheses about the (first-order)
context of animal movement.

4.1. Association rule mining

Association rule mining is often explained using the example of the ‘market basket’ analy-
sis. Given a data set of supermarket shopping transactions, association rule mining is able
to identify associations between sets of items that customers tend to buy together (Agrawal
et al. 1993). For example, association rule mining can help in answering questions such as
‘How frequently do customers that buy beer also buy crisps?’

Instead of shopping transactions, our analysis applies association rule mining to
appropriately formatted spatiotemporal data in order to identify candidate causal-like
‘allows,’ ‘initiates,’ and ‘terminates’ relationships between environmental states and move-
ment events. Table 1 shows an example of appropriately structured fish movement data.
We assume a set I of moving-object identifiers (in our case, tagged fish IDs) and a set
T of timestamps (days, in the case of our fish tracking example). Next, we assume a set
S of observed environmental states of interest (for example, a state of moderate water
temperature, labeled wt4s, or high river flow, labeled rf 4s) together with a set M of

Table 1. Example state table, showing the environmental states ‘experi-
enced’ and movement events ‘participated in’ by two fish (IDs 41937-610-
67 and 43521-530-68) in consecutive timestamps (1753, 1754, 1755, 1756,
1771, 1772, 1779). For example, the ‘itemset’ {rf 4s, me, de} (high river flow
together with fish movement downstream) occurs five times in this table (see
Section 4.3 for an explanation of the state definition).

Transaction ID Itemset

Fish identifier (I) Timestamp (T) States and events (2S∪M )

41937-610-67 1753 {rf 4s, me, de}
43521-530-68 1754 {rf 4s, me, de}
41937-610-67 1755 {rf 4s, me, de}
41937-610-67 1756 {rf 4s, wt3s, me, de}
41937-610-67 1771 {rf 4s, wt3s, me, ue}
43521-530-68 1772 {rf 4s, wt3s, me, de}
41937-610-67 1779 {rf 4s, wt4s, me, ue}
. . . . . . . . .

D
ow

nl
oa

de
d 

by
 [T

he
 U

ni
ve

rs
ity

 O
f M

el
bo

ur
ne

 L
ib

ra
rie

s]
 a

t 0
1:

22
 2

5 
M

ar
ch

 2
01

4 



International Journal of Geographical Information Science 369

movement events (such as upstream, ue, or downstream, de, movement). To avoid any
confusion, we use the subscripts ‘e’ and ‘s’ to distinguish events and states, respectively.

Pairs from the set I × T form our ‘transactions’ in the association rule mining terminol-
ogy. For each pair (i, t) ∈ I × T , it is then possible to list as an ‘itemset’ the environmental
states ‘experienced’ by moving object i at time t. ‘Experienced’ in this sense means specif-
ically ‘spatially and temporally co-located with’ (see Section 3). Finally, we also add to
the ‘itemset’ for the pair (i, t) any movement events that occurred to object, i at time
t. To stretch the market-basket analogy, a moving object at a particular time ‘buys’ the
environmental states it experiences along with the movement events it participates in.

The output of association rule mining is the frequency of specified rules. For example,
for a rule such as ‘beer ⇒ crisps’ (that customers that purchase beer also purchase crisps),
the output of association rule mining is the frequency with which beer and crisps appear
in the same shopping transaction. In data mining terminology, the frequency of the co-
appearance of items in a transaction relative to the total number of transactions is termed
the support of a rule. In contrast, the frequency of co-appearance of items relative to the
frequency of the transactions containing the antecedent in the rule is termed the confidence
of that rule (Mohammad and Nishida 2010).

Turning back to our moving-object data, we can interpret the support and confidence
of a rule m ⇒ s, for movement event m ∈ M and environmental state s ∈ S, as measures
of the strength of evidence that state s ‘allows’ movement event m to occur. This two-step
mapping–first from movement and environmental data to association rule mining input and
second from association rule mining output to causal-like relationship–is at the core of our
approach to mining causal and causal-like relationships.

4.2. Sequence mining

The causal-like relationship ‘allows’ is, in fact, not the main focus of our approach. Instead,
our primary focus is on true causal relationships between environmental and movement
events. To identify candidate causal relationships, we take our approach a step further, and
use the technique of frequent sequence mining.

Frequent sequence mining is an extension of association rule mining that additionally
accounts for the order in which items were bought. For example, sequence mining can
help in answering questions such as ‘How often do customers that buy beer and crisps
subsequently buy headache tablets and fruit?’ (Zaki 2001).

Turning once more to spatiotemporal data about movement and its environmental con-
text, we can now construct a table of movement and environmental events, such as that in
Table 2, in a similar way to Table 1. The key difference between Tables 1 and 2 is that the
itemsets in Table 2 are from the combination of the set M of movement events and a set of
environmental events of interest, E (for example, the start of a high river flow state, labeled
rf 4e, or a full moon event, labeled fme). By contrast, Table 1 combines the set states S with
the set of movement events M .

Sequence mining again outputs the frequency of co-appearance but for specified
sequences rather than rules. Nevertheless, we again interpret the frequency of a specified
sequence of events, ve → me for some ve ∈ E and me ∈ M , as an indication of the strength
of evidence that environmental event ve ‘caused’ movement event me.

4.3. States and events

The previous two sections in essence set out a mapping first from spatiotemporal data
about movement events and environmental states/events to the input of frequent-pattern
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370 S. Bleisch et al.

Table 2. Example event table, showing the environmental events ‘experi-
enced’ by a fish (ID 25598-350-66) in seven consecutive timestamps (1657,
1659, 1665, 1667, 1669, 1675, 1676) during the first 20 days of monitor-
ing this fish. For example, downstream (de) movement (me) at timestamp
1669 follows the full moon (fme) and start of lower river flow (rf 2e) events at
timestamp 1667 (see Section 4.3. for an explanation of the event definition).

Sequence ID Time Itemset
Fish identifier (I) Timestamp (T) Events (2E∪M )

25598-350-66 1657 {rf 4e, me, de}
25598-350-66 1659 {fqe}
25598-350-66 1665 {rf 3e}
25598-350-66 1667 {fme, rf 2e}
25598-350-66 1669 {me, de}
25598-350-66 1675 {lqe, rf 3e}
25598-350-66 1676 {rf 4e}
. . . . . . . . .

mining techniques and then from the output of those frequent-pattern mining techniques to
inferences about candidate causal and causal-like relationships. An important unanswered
question, then, is: How can one derive the required input information about movement
events and associated environmental events and states?

In general, we can identify four broad cases:

(1) Categorical data is supplied in the form of timestamped states (e.g., habitat
classifications, such as ‘high habitat quality’).

(2) Measured data is available that must then be categorized into timestamped states,
for example, using thresholding (e.g., <10◦C is classified as ‘low temperature’
state wt1s, ≥10◦C and <15◦C is classified as state wt2s, and so forth. . .)1.

(3) Data is supplied in the form of timestamped events (e.g., fish movement events,
me, or moon phases, such as ‘full moon event’ or event fme).

(4) Categorical data about states (whether supplied directly, see case 1, or categorized
from measured data, as in case 2) must be further categorized into timestamped
events, based on transitions between states (e.g., for water temperature, a transition
between state wt2s and wt1s may be classified as the event wt1e ‘start of a low
temperature state’). Formally, an event ve is a relation on the set of states S, ve ⊆
S × S.

In practice, all four cases are to be expected, and examples of each case were encountered
in the course of our specific study, discussed in more detail below.

The import of these cases is that in addition to data about object movement and its envi-
ronmental context, our analysis requires as input human common sense or domain expert
definitions about the events and states of interest. In some cases (specifically, cases 2 and 4),
these commonsense or expert definitions will effectively encode ‘initiation’ and ‘termina-
tion’ relationships between states and events. Hence, while our technique outputs candidate
‘causes’ and ‘allows’ relationships, it typically requires ‘initiation’ and ‘termination’ rela-
tionships to be provided as input. Further, note that there exists a duality in initiation and
termination of states. Any event that initiates a state will, necessarily, terminate another
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(the state that previously existed before the initiation). As a consequence, in the sequel we
only discuss the initiation of states, and ignore their dual, termination.

Importantly, our analysis is entirely agnostic about whether the chosen definitions are
sensible or ‘correct.’ Arbitrary or nonsense definitions are unlikely to yield meaningful
candidate causes. However, state and event definitions may easily be changed (e.g., varying
the thresholds used for state category boundaries) and the analysis rerun with new (and
hopefully more salient) definitions.

4.3.1. Movement data set

We applied our technique to the raw fish movement data, which contains information about
the location (river zone) of each fish on each day. Despite its limitations, (including the
relatively coarse spatial granularity and the small sample of fish, when viewed relative to
the total fish population in the river), the data is a remarkably rich source of fish movement
patterns, such as upstream and downstream movements in varying cycles and over different
distances.

Figure 3 illustrates a small part of the raw movement data pictorially. The figure shows
different river zones (differentiated using different colors of dots) in which 32 fish (out of
the total of 1050 in our data set) were located over a period of 108 days (out of the total of
6 years).

In reference to Tables 1 and 2, the set of moving-object identifiers I are the fish IDs;
the set of timestamps T is the set of days over which the monitoring occurred.

The set of states (locations) for our movement data are therefore already given (case 1
mentioned earlier), in terms of the set L of 24 river zones. Clearly, in some other data sets,
such a categorization of states may not exist (e.g., in trajectory-based coordinate movement
data). In these cases, other categorizations into location states (e.g., in cordon-structured
data more generally, cf. Both et al. 2012) or movement states (e.g., Laube et al. 2005) are
required.

The set of movement events must then be selected based on transitions between these
states, as in case 4 mentioned earlier. In the example of our fish movement data set, a set of
atomic movement events follow relatively naturally from these states. The key movement
events chosen were upstream movement (ue, i.e., movement of a fish from one river zone
to another zone upstream), downstream movement (de, i.e., movement of a fish from one

Fish

Time

t + 108

ID n + 32

t

ID n

Figure 3. Pictorial illustration of a subset of the raw fish data. Each horizontal line represents a
single fish. Each dot along the horizontal lines represent a day. The colors of the dots indicate different
river zones in which the specific fish was located each day. Fish movement occurs when the horizontal
line changes its color, i.e., in the sixth line the fish moves from river zone blue to river zone orange,
stays there for 2 days and moves on to river zone pink.
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river zone to another zone downstream), and the coarser-grained event of movement (me,
i.e., movement of a fish from one river zone to another zone).

It is worth noting that there is no requirement in our analysis that the events of inter-
est chosen are pairwise disjoint or jointly exhaustive. As we shall see, our data mining
technique operates whatever states and events are chosen. Indeed, the approach is ‘data
hungry’: we also experimented with a range of other states and events, such as from and to
zone movement events (e.g., movement to or from river zone g, tge and fge, respectively).

In addition to the actual fish movement data set, we generated a data set of randomized
fish movements between the different river zones against which to validate our technique.
The simulated data set is of the same size as the actual fish data set, i.e., comprising the
same number of fish and movements over the 6-year time span.

4.3.2. Contextual environmental data sets

Contextual environmental data will most frequently be supplied as measured environmen-
tal parameters. In the specific example of environmental data relevant to fish movement,
five separate contextual data sets were available: water temperature, maximum daily air
temperature, moon phases, river flow, and water level.

Categorization of the environmental data into states, therefore, most often follows
case 2 mentioned earlier. For example, observations of water temperature were initially
classified into five categories based on equal intervals: <10◦C (wt1s), ≥10◦C and <15◦C
(wt2s), ≥15◦C and <20◦C (wt3s), ≥20◦C and <25◦C (wt4s), and ≥25◦C (wt5s). In the
more complex case of river flow, we used categories based on quartiles to enable com-
parison of high river flow in, say, a small tributary with high river flow in the main river.
We return to a discussion of the effects of the choice of categories in Section 5.1.2. For now,
we assume that the domain expertise or general knowledge required to formulate categories
of interest is available as an input to the analysis process.

Categorization of environmental events typically proceeds as in case 4 mentioned ear-
lier. For example, the start of a state of high river flow (rf 4e) was defined as a change from
one of the other three river flow states (recall, events are defined as relations on states, i.e.,
rf 4e = {(rf 1s, rf 4s), (rf 2s, rf 4s)}, (rf 3s, rf 4s)}).

One exception is that moon phase data comprises events as first-class observations,
case 3 mentioned earlier. We predict, observe, and record the occurrence of a full moon
event directly, rather than inferring full moon event occurrence from observations of moon-
fullness states (e.g., a transition between a state of 99% moon visibility to the state of 100%
moon visibility).

In most cases, these environmental data sets exhibit some spatial variation (e.g., at
some given time, water temperature in zone f may be different to that in zone g). However,
it is also allowable that data may, on occasion, not vary spatially over the study area, either
because of lack of available detail or simply that no spatial variation is found over the study
area (such as in the case of moon phases, which vary temporally but not spatially over our
study area).

4.4. Implementation

The analysis procedure outlined above was implemented using TraMineR sequence mining
package for the R statistical language (Gabadinho et al. 2011). Some customized Python
script was also generated to automate the data preprocessing. In short,
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(1) The raw input data can be transformed into tables of atomic movement events using
the standard R commands and the TraMineR seqdef command. As an interme-
diate stage in this step, TraMineR allows the definition of a transition matrix,
which specifies movement event tokens for each zone transition. For example,
transition between zones f and g may be classified in the matrix with a range
of different event tokens: ‘movement’ (me), ‘from f ’ (ff e), and/or ‘downstream’
movement (de).

(2) Custom-written Python scripts were developed to annotate fish movements with
contextual, environmental events. The script requires as input the definitions
of contextual events of interest (e.g., low temperatures, high flows, etc.) The
script then looks up for each fish and what, if any, contextual events that fish
‘experienced.’
(a) In the case of mining, candidate causal-like ‘allows’ relationships, the script

associates with each fish identifier the time and type of any movement events
that fish participated in and the environmental states that were spatiotemporally
co-located with that fish at the beginning of a movement (see Table 1).

(b) In the case of mining true candidate causal relationships, the script associates
with each fish identifier the time and type of any movement events that fish
participated in and/or any environmental events that were experienced by that
fish (i.e., spatiotemporally co-located when the event began).

(3) The command seqefsub provided by TraMineR was used to mine the state/event
tables for sequences. In addition to the tabulated state/event data created in the
previous step, the seqefsub command accepts as additional input a maximum
time lag between events. A time lag of zero ensures that only strictly con-
temporaneous items are mined (i.e., conventional association rule mining) and
so in combination with the state table outputs candidate ‘allows’ relationships.
A non-zero time lag, in combination with the event table, results in mining of
candidate causal relationships, allowing for the granularity effects discussed in
Section 3.1.

5. Results

This section evaluates our candidate causal mining technique through application to our
specific example data set of fish movement events in the Murray River. The results of
three distinct analyses are presented. First, an analysis of the output of mining candidate
causal relationships between atomic environmental and movement events is presented in
Section 5.1. Second, an analysis of the candidate causal-like ‘allows’ relationship between
environmental state and movement events is presented in Section 5.2. Third, Section 5.3
examines candidate causal relationships for aggregate movement event, involving complex
sequences of events.

For validation purposes, these analyses were also repeated on a simulated data set of
randomized fish movement events. This approach did not in any cases identify candidate
causal relationships between the environmental data and the randomized fish movements.
Hence, we do not report in detail the results of these analyses here. However, where suf-
ficient numbers of observations exist (Sections 5.1 and 5.2), we do compare the patterns
identified by our analysis with patterns of random movement, using statistical hypothesis
tests to check the likelihood that patterns identified by our technique could have occurred
by chance.

D
ow

nl
oa

de
d 

by
 [T

he
 U

ni
ve

rs
ity

 O
f M

el
bo

ur
ne

 L
ib

ra
rie

s]
 a

t 0
1:

22
 2

5 
M

ar
ch

 2
01

4 



374 S. Bleisch et al.

5.1. Results #1: atomic events

Our first analysis aims to validate those atomic event pairs that relate an environmental
event to a subsequent fish movement event. Our sequence mining technique was applied
to the entire fish data set, with a time lag of 2 days, to allow for granularity effects (see
Section 3.1). The time lag of 2 days was chosen in discussion with domain experts,
who indicated this was a reasonable lag from the perspective of fish biology. The out-
puts of our frequent sequence mining procedure were filtered to include only those binary
sequences that began with an environmental event and were followed (within 2 days) by
fish movement.

Figure 4 summarizes the results of this analysis. The rows in Figure 4 show three envi-
ronmental variables: water temperature (wt), river flow (rf ), and moon phase (mp). The
columns show the different types of movement events either upstream (ue) or downstream
(de) movement, or upstream or downstream movement (me). The histogram in each cell
compares the observed and expected frequency of the corresponding binary sequences
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Figure 4. Summary of expected and observed frequency of general movement (me), or specific
upstream (ue) or downstream (de) movement following water temperature (wt, equal intervals from
wt1e (<10◦C) to wt5e (>25◦C)), river flow (rf , first quartile rf 1e to fourth quartile rf 4e), or moon
phase (mp, full moon fme, new moon nme, first quarter fqe, last quarter lqe) events within 2 days.
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of the environmental event followed by the specified movement event (e.g., the top right
histogram in Figure 4 shows the observed and expected frequency of the specified water
temperature events being followed by downstream fish movement).

As introduced above, the expected frequency was computed by assuming that fish
movements were random, and so causally unrelated to environmental events and equally
likely to occur within 2 days of any environmental event. Thus, the expected frequency
reflects the underlying frequency of different environmental events.

The figure also summarizes the results of a chi-square statistic, to test the null hypoth-
esis that there is no significant difference between the observed and expected frequencies
of event sequences.

For example, looking at the histogram in row rf (river flow) and column de (down-
stream movement), we can see that a high river flow event was followed (within 2 days)
by downstream movement more often than would be expected. Conversely, low river flow
events were followed less frequently than expected by downstream movement. The differ-
ence between the observed and expected frequencies is significant at 95% confidence level
in this case.

The environmental variables maximum daily air temperature and water level are omit-
ted from Figure 4 because it was found that these results followed very closely water
temperature and river flow, respectively.

5.1.1. Discussion

We interpret these results as an indication that changes in environmental water temperature
are associated with changes to subsequent fish movement. Extreme water temperatures
(high or low) tend to be followed by decreased movement compared with that expected;
moderate water temperatures tend to be followed by increased movement.

Similar effects are observable in river flow events, albeit to a lesser extent. Higher
flows are associated with greater than expected movement and lower flows with less fish
movement. However, while this effect is significant for movement in general, it is not sig-
nificant at the 99% level for upstream movement or for downstream movement specifically
(although it is significant at the 95% level for downstream movement). This is on one hand
due to the smaller sample sizes for upstream and downstream movement. However, it can
also be attributed to high river flow events being followed by increased downstream move-
ment, but not similarly influencing upstream movement. The discussion in Section 5.2.1
shows that upstream movement is more strongly influenced by the ‘allowing’ state high
river flow.

Surprisingly, from a domain expert’s point of view, moon phase was not associated
with significant changes in movement patterns. None of the differences between observed
and expected movement following moon phase changes were significant. However, there
is a slight apparent trend toward an increase of downstream movement following a new
moon. Even though not statistically significant, such observations may warrant further
investigation.

From the domain expert’s perspective, we take these patterns as indicative of potential
causal relationships. We may wish to infer from the results that water temperature and river
flow events may cause the associated movement events, while moon phase events may not.

5.1.2. Choice of categories

As already noted, our analysis is dependent on the definition of the categories of inter-
est. The category boundaries define the different environmental states, and transitions
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Figure 5. Summary of expected and observed frequency of movement with revised classification of
water temperature (wt), highlighting the biologically significant temperature range 16–23◦C (wt3e).

between environmental states provide our environmental event definitions. Poor or unfavor-
able choices of category boundaries may mask certain effects; conversely, stronger effects
may be less sensitive to changes in category boundaries.

For example, imagine that a only narrow temperature range of, say, 16–18◦C, in actu-
ality, causes upstream movement events and other temperature ranges have no impact on
movement. In this case, choosing category boundaries that do not correspond well to this
actual causal effect (e.g., below 10◦C, 11–30◦C, and above 30◦C) may prevent our analysis
from identifying this relationship.

In the context of our application, a discussion with domain experts about the results in
Figure 4 revealed that the temperature range of 16–23◦C is especially significant for fish
biology. In this way, the results of our analysis using one choice of category boundaries can
provide feedback that may prompt experts to link to other relevant knowledge. Figure 5
shows the results of repeating our analysis with revised water temperature categories, tak-
ing into account this additional expert knowledge. Compared to row wt in Figure 4, Figure 5
shows a similar size of effect in the category 16–23◦C (wt3e), as in the original categories
15–19◦C (wt3e) and 20–24◦C (wt4e). The revision in this case actually leads to a slightly
lower statistical significance; downstream movement is only significant at the 95% level in
Figure 5 (as opposed to the the 99% level in Figure 4). However, this difference is, at least
in part, likely to be due to the reduction in the number of categories from five to four; the
chi-squared test is sensitive to changes in the degrees of freedom.

Thus, in this case, it seems the effect of water temperature upon fish movement is
relatively robust to changes in the category boundaries. Be that as it may, the example
illustrates that the objective of our analysis is not to find good categorizations, but only to
support domain expertise in exploring evidence for or against chosen categorizations.

5.2. Result #2: state associations

Turning now to the role of states, rather than events, Figure 6 summarizes impact of envi-
ronmental states upon fish movement (the output of our association rule mining upon the
state table for the causal-like ‘allows’ relationship). Like Figures 4 and 5, Figure 6 com-
pares histograms showing the expected and observed frequency of fish movement events.
Unlike Figures 4 and 5, Figure 6 classifies this movement according to environmental states
that had persisted for more than 2 days. States that had not persisted for more than 2 days
would imply that an event (change in state) had occurred within that period. Such events
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Figure 6. Summary of expected and observed frequency of general movement (me), or specific
upstream (ue) or downstream (de) movement co-occurring with specified water temperature (wt,
equal intervals from wt1e (<9◦C) to wt4e (>23◦C)), river flow (rf , first quartile rf 1e to fourth quartile
rf 4e) states, persisting for more than 2 days.

were excluded from analysis of state associations–instead they were captured within the
analysis of events (in Sections 5.1 and 5.3). Thus, the labels on the x-axes of Figure 6 refer
to the state itself (e.g., the persistent state of ‘low river flow’) as opposed to the associated
event used in Figures 4 and 5 (e.g., ‘the start of a state of low river flow’).

The results indicate that both water temperature and river flow states have a statistically
significant (at the 99% level) association with all fish movement, both upstream and down-
stream. The histograms show that a persistent state of 16–23◦C water temperature is most
strongly associated with greater than expected fish movement and below 9◦C with less
than expected movement. Similarly, a persistent state of highest river flow is most strongly
associated with greater than expected fish movement; lowest river flow is most strongly
associated with less than expected movement.

Figure 6 only presents histograms related to water temperature and river flow states, but
not moon phase. Moon phase cannot be analyzed in this way because, as already discussed
in Section 4.3.2, moon phase data comprises events as first-class observations, not derived
from associated states.

5.2.1. Discussion

We interpret the results as indicative that persistent moderately high water temperatures
and high river flows are enabling states that allow fish movement events to occur. These
enabling states show slightly different causal patterns to those of their associated events.
For example, while the occurrence of a high river flow event is not significantly associated
with upstream fish movements at the 99% level (see Figure 4), the persistence of a state of
high river flow is associated with upstream fish movements at this significance level. Thus,
as already discussed in Section 5.1.1, we may infer that high river flow is an enabling state
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for upstream fish movement and a potentially causing event for downstream fish move-
ment. Of course, care is needed to acknowledge the inextricable relationship between the
persistence of a state and the event that originally initiated that state. An alternative inter-
pretation might posit that if the start of a high river flow event is a cause of downstream
movement, a fish’s subsequent and unobserved need to return (upstream), even in the face
of persisting high river flow, may be the true cause of the upstream movement. In short, it
is possible that the coincidence of upstream movement and a persistent state of high river
flow might be instead the result of a chain of unobserved causes that began with the start
of high flow event.

5.3. Result #3: aggregate events

After looking at enabling states and atomic events, we examine more complex, aggre-
gate sequences of events and states. Aggregate events can consist purely of fish movement
events, such as a sequence of several upstream movements of a fish (each within the defined
time gap from its predecessor). Further, it is also possible to look for the environmental
events that are candidate causes of a longer sequence of fish movement events. Naturally,
the more complex a sequence of events, the less frequently it will occur. Thus, in our
data set we can no longer rely on statistical hypothesis testing, since the number of sam-
ples of longer movement events is too small. However, we can still use other measures of
importance, in particular support and confidence.

The two of the most common measures of the strength of association rules are support
and confidence. Support is generally defined as the frequency of an association rule in a
data set; while confidence expresses the prediction strength of the rule (Mohammad and
Nishida 2010). Following previous work, the support and confidence for an event sequence
can be similarly defined:

Support (object) : so (A) = σ (A)

n
(1)

Confidence (object) : co (A → B) = σo (A → B)

σo (A)
(2)

where A and B are atomic events or aggregate event sequences; σ o(A) is the number of
objects (i.e., fish) that exhibit the pattern A at least once; and n is the total number of
objects in the data set.

However, these standard definitions are primarily designed for association rule min-
ing and consequently capture information on re-occurring event sequences. Thus, for
sequence mining it is important additionally to know the event frequency as well as the
event confidence, defined as follows (Das et al. 1998):

Confidence (event) : ce (A → B) = σe (A → B)

σe (A)
(3)

where σ e(A) is the absolute frequency of event or event sequence A in the data set (possibly
occurring multiple times for the same object).

To illustrate, Table 3 shows some examples of aggregate events (Ei) and their respec-
tive support and confidence on fish and event levels. In Table 3, the sequence of two
consecutive atomic upstream movement events A = ({ue}, {ue}) (within 2 days) is exhib-
ited by 45 out of 1050 fish.2 Thus the per-object support for this aggregate event is
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Table 3. Example aggregate event table, showing six aggregate event sequences (E1, E2, E3, E4 =
E6, E5, E7) composed of upstream and downstream movement events, environmental water temper-
ature event, and a environmental river flow state (see Section 4.3 for an explanation of the event and
state definitions). The support (so, per-object) indicates the proportion of fish for which the specified
aggregate event occurs at least once. The confidence (co, per-object) indicates the number of fish for
which the specified event happens as a proportion of those fish that also exhibit the simpler aggregate
event (shown on the preceding row). The event frequency (σ e) reports how often a specified aggre-
gate event occurs (including possibly multiple times for the same fish). The confidence (ce, per-event)
indicates the number of specified events as a proportion of the number of simpler aggregate events
(preceding row).

Aggregate events so(Ei) co(Ei–1 → Ei) σ e(Ei) ce(Ei–1 → Ei)

E1 ({ue}, {de}, {ue}, {de}) 0.014 30
E2 ({de}, {ue}, {de}, {ue}, {de}) 0.005 0.333 14 0.467
E3 ({ue}, {de}, {ue}, {de}, {ue}, {de}) 0.003 0.600 5 0.357

E4 ({ue}, {ue}) 0.042 84
E5 ({wt3e}, {ue}, {ue}) 0.005 0.111 6 0.071

E6 ({ue}, {ue}) 0.042 84
E7 ({rf 4s, ue}, {ue}) 0.001 0.022 1 0.012

so(E4) = 45/1050 = 0.042. Further, five of those 45 fish engage in the rapid upstream
movement within 2 days of a moderate water temperature event, i.e., co(E4 → E5) =
5/45 = 0.111.

Turning to event confidence, Table 3 shows that of the 84 occurrences of rapid upstream
movement (spread amongst 45 fish, see above), 6 occurrences are immediately preceded
(within 2 days) by a moderate water temperature event, i.e., ce(E4 → E5) = 6/84 = 0.071.

In this way, the per-object and per-event measures provide different and complemen-
tary information about the relative strengths of the rules. Higher per-object support and
confidence (so(Ei) and co(Ei–1 → Ei)) indicate that a rule applies to most fish but ignores
the frequency with which that rule occurs over time (e.g., it may only occur once in 6 years
for each fish). Higher event frequency and per-event confidence (σ e(Ei) and ce(Ei–1 → Ei))
indicate that rule holds over time but ignores the number of fish for which that rule holds
(e.g., the rule may occur repeatedly but only for a small number of ‘unusual’ fish).

5.3.1. Discussion

While complex aggregate events occur only rarely in our data set, reporting support, con-
fidence, and frequency does allow some assessment of the strength of different rules. For
example, looking at oscillating upstream and downstream movement patterns of fish (see
aggregate events E1, E2, and E3 in Table 3), we find that 33.3% of fish that exhibit the first
movement pattern (E1) also exhibit the second pattern (E2). Of those, 60% also exhibit the
third longer pattern (E3). Thus, it appears that previous movement oscillation is a relatively
good predictor of future oscillation for an individual fish. However, the per-event confi-
dence does not show such strength of pattern, reducing from 46% for E2 to 35% for E3.
This can be interpreted as an indication that while at some point fish that perform oscilla-
tion E2 are likely to also perform oscillation E3, this pattern is less likely to hold for every
occurrence of pattern E2 for a fish.

A further example in Table 3 concerns the aggregate two-zone upstream movements
of fish (E4/E6). The aggregate event E5 is a two-zone upstream movement preceded
(candidate cause) by a moderate water temperature event (wt3e). By contrast, the aggregate
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event E7 is a two-zone upstream movement accompanied (candidate causal-like allows
relation) by a high river flow state (rf 4s). Based on the available data, the per-object
and per-event confidence provide stronger evidence that the water temperature event
may cause this movement, rather than that the state of high river flow allows this
movement.

6. Summary and conclusions

Based on a foundational ontology of causation, we successfully used association rule and
sequence mining to identify candidate causal relationships between fish movement pat-
terns and their environmental drivers. Our focus has been on environmental states (‘allows’
relationship) and events (‘causes’ relationship) that influence fish movement events.

In this article, we focus primarily on the technique itself and use the specific application
to fish movement in validating our approach. Discussions with fish ecologists have given
tentative indications of the potential usefulness of the approach. For example, the result that
moderate water temperature is a candidate cause for increased movement elicited further
information from the domain experts that the temperature range of 16–23◦C is important
for fish physiology. Conversely, the absence of moon phase as a candidate cause of fish
movement was counter to the ecologists expectations, potentially warranting further inves-
tigations. However, detailed interpretation of the results in the application domain is left as
a topic for further study in collaboration with fish ecologists.

Our adoption of a solid ontological foundation gives us high confidence that the
approach should be transferable to many different application domains. The increasing
commonality of movement data guarantees a very wide range of potential further appli-
cations, including studying human movement via mobile phone logs, traffic movements
via GNSS tracking or electronic tolling, as well as other studies of animal movements,
including other studies of fish ecology (e.g., Johnston and Bergeron 2010). For exam-
ple, ongoing extensions to this work are currently investigating the application of this
new technique to human activity and travel logs in the domain of health and epidemiol-
ogy monitoring. Further, this article has focused specifically on the important relationship
between movement and its environmental context. However, exactly the same approach
can also be applied to inferring candidate causal relationships between any type of context
for movement, such as time or day of the week (e.g., in traffic monitoring), other known
events (such as football matches, roadwork), or even other movements (such as bus or train
schedules).

Additionally, there is potential to extend this approach in at least two directions. First,
the approach could benefit from integration within a broader visual analytics process.
Remapping the patterns found in space and time, using geovisualization methods, could
allow for visual exploration of the now enriched and condensed knowledge base. In col-
laboration with domain experts, such techniques could be used to help create knowledge
about, for example, the effects of different state and event definitions, which in turn could
be fed back in the data mining process. Second, our technique might usefully be extended
to search automatically for different parameterizations, including varying time lags and
thresholds used for state/event definitions, that lead to the strongest results in regard to can-
didate causal relationships. Such an approach might reveal unexpected contextual drivers
of movement, which in turn call for further exploration in collaboration with domain
experts.
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Notes
1. Note that the usual range of options exist for thresholding continuous data into qualitative

categories, including equal interval, quantiles, k-means, and so forth.
2. In fact, a surprisingly small number of fish in the study ever move far. Of the 1050 tagged

fish, only around 260 are ever recorded moving between river zones. Consequently, the support
and confidence reported arguably underestimates the strength of causal relationships; although
only 4% of fish engage in rapid upstream movement (E4/E6), this translates to approximately
17% of the fish that ever move.
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